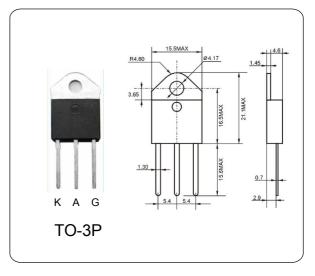
TIGER ELECTRONIC CO.,LTD

Product specification

50A SCRs BTW69-800

DESCRIPTION


Available in high power packages, the BTW69 Series is suitable in applications where power handling and power dissipation are critical, such as solid state relays, welding equipment, high power motor control.

Based on a clip assembly technology, they offer a superior performance in surge current handling capabilities.

Thanks to their internal ceramic pad, they provide high voltage insulation (2500V RMS), complying with UL standards (file ref: E81734).

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

PARAMETER	Symbol	Value	Unit
Repetitive peak off-state voltages	V _{DRM} 800		V
peak off-state reverse voltages	V_{RRM}	800	V
RMS on-state current	I _T	50	Α
Non-repetitive peak on-state current	I _{TSM}	580	Α
Max. Operating Junction Temperature	T _j	110	°C
Storage Temperature	T _{stg}	-45~150	°C

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

PARAMETER	Symbol	Test Conditions	Min.	Max	Unit
Repetitive peak off-state voltages	V_{DRM}	I _D =0.1mA	800	_	V
Repetitive peak off-state current	I _{DRM}	V _{DRM} =720V		10	uA
On-state voltage	V_{TM}	I _T =100A	_	1.90	V
Holding current	I _H	I _T =0.5A,Gate open		150	mA
Gate trigger Current	l _{GT}	V_D =12V, R_L =33 Ω	8.0	80	mA
Gate trigger Voltage	V_{GT}	V_D =12V, R_L =33 Ω	_	1.3	V